Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer (2024)

References

  1. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    Article CAS PubMed Google Scholar

  2. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    Article PubMed Google Scholar

  3. Inoue, M., Sumii, Y. & Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 5, 10633–10640 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  4. Benedetto Tiz, D. et al. New halogen-containing drugs approved by FDA in 2021: an overview on their syntheses and pharmaceutical use. Molecules 27, 1643 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  5. Britton, R. et al. Contemporary synthetic strategies in organofluorine chemistry. Nat. Rev. Methods Primers 1, 47 (2021).

    Article CAS Google Scholar

  6. Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  7. Yang, X. Y., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 115, 826–870 (2015).

    Article CAS PubMed Google Scholar

  8. Caron, S. Where does the fluorine come from? A review on the challenges associated with the synthesis of organofluorine compounds. Org. Process Res. Dev. 24, 470–480 (2020).

    Article CAS Google Scholar

  9. Walker, M. C. & Chang, M. C. Y. Natural and engineered biosynthesis of fluorinated natural products. Chem. Soc. Rev. 43, 6527–6536 (2014).

    Article CAS PubMed Google Scholar

  10. O’Hagan, D. & Deng, H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem. Rev. 115, 634–649 (2015).

    Article PubMed Google Scholar

  11. Vaillancourt, F. H., Yeh, E., Vosburg, D. A., Garneau-Tsodikova, S. & Walsh, C. T. Nature’s inventory of halogenation catalysts: oxidative strategies predominate. Chem. Rev. 106, 3364–3378 (2006).

    Article CAS PubMed Google Scholar

  12. Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  13. Papadopoulou, A., Meyer, F. & Buller, R. M. Engineering Fe(II)/α-ketoglutarate-dependent halogenases and desaturases. Biochemistry 62, 229–240 (2023).

    Article CAS PubMed Google Scholar

  14. Dong, C. et al. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427, 561–565 (2004).

    Article CAS PubMed Google Scholar

  15. O’Hagan, D., Schaffrath, C., Cobb, S. L., Hamilton, J. T. G. & Murphy, C. D. Biosynthesis of an organofluorine molecule—a fluorinase enzyme has been discovered that catalyses carbon–fluorine bond formation. Nature 416, 279 (2002).

    PubMed Google Scholar

  16. Zechel, D. L. et al. Enzymatic synthesis of carbon–fluorine bonds. J. Am. Chem. Soc. 123, 4350–4351 (2001).

    Article CAS PubMed Google Scholar

  17. Cros, A., Alfaro-Espinoza, G., De Maria, A., Wirth, N. T. & Nikel, P. I. Synthetic metabolism for biohalogenation. Curr. Opin. Biotechnol. 74, 180–193 (2022).

    Article CAS PubMed Google Scholar

  18. Cheng, X. & Ma, L. Enzymatic synthesis of fluorinated compounds. Appl. Microbiol. Biotechnol. 105, 8033–8058 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  19. Eustáquio, A. S., O’Hagan, D. & Moore, B. S. Engineering fluorometabolite production: fluorinase expression in salinispora tropica yields fluorosalinosporamide. J. Nat. Prod. 73, 378–382 (2010).

    Article PubMed PubMed Central Google Scholar

  20. Liu, W. & Groves, J. T. Manganese catalyzed C–H halogenation. Acc. Chem. Res. 48, 1727–1735 (2015).

    Article CAS PubMed Google Scholar

  21. Panda, C., Anny-Nzekwue, O., Doyle, L. M., Gericke, R. & McDonald, A. R. Evidence for a high-valent iron-fluoride that mediates oxidative C(sp3)–H fluorination. JACS Au 3, 919–928 (2023).

  22. Farley, G. W., Siegler, M. A. & Goldberg, D. P. Halogen transfer to carbon radicals by high-valent iron chloride and iron fluoride corroles. Inorg. Chem. 60, 17288–17302 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  23. Bower, J. K., Cypcar, A. D., Henriquez, B., Stieber, S. C. E. & Zhang, S. C(sp3)–H fluorination with a copper(II)/(III) redox couple. J. Am. Chem. Soc. 142, 8514–8521 (2020).

  24. Huang, X., Liu, W., Hooker, J. M. & Groves, J. T. Targeted fluorination with the fluoride ion by manganese-catalyzed decarboxylation. Angew. Chem. Int. Ed. 54, 5241–5245 (2015).

    Article CAS Google Scholar

  25. Huang, X. et al. Late stage benzylic C–H fluorination with [18F]fluoride for PET imaging. J. Am. Chem. Soc. 136, 6842–6845 (2014).

    Article CAS PubMed Google Scholar

  26. Liu, W. & Groves, J. T. Manganese-catalyzed oxidative benzylic C–H fluorination by fluoride ions. Angew. Chem. Int. Ed. 52, 6024–6027 (2013).

    Article CAS Google Scholar

  27. Liu, W. et al. Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 337, 1322–1325 (2012).

    Article CAS PubMed Google Scholar

  28. Pinter, E. N., Bingham, J. E., AbuSalim, D. I. & Cook, S. P. N-directed fluorination of unactivated Csp3–H bonds. Chem. Sci. 11, 1102–1106 (2020).

    Article CAS Google Scholar

  29. Groendyke, B. J., AbuSalim, D. I. & Cook, S. P. Iron-catalyzed, fluoroamide-directed C–H fluorination. J. Am. Chem. Soc. 138, 12771–12774 (2016).

    Article CAS PubMed Google Scholar

  30. Hintz, H. et al. Copper-catalyzed electrochemical C–H fluorination. Chem Catal. 3, 100491 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  31. Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)–H azidation. Science 376, 869–874 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  32. Liu, P. et al. Protein purification and function assignment of the epoxidase catalyzing the formation of fosfomycin. J. Am. Chem. Soc. 123, 4619–4620 (2001).

    Article CAS PubMed Google Scholar

  33. Wang, C. et al. Evidence that the fosfomycin-producing epoxidase, HppE, is a non-heme-iron peroxidase. Science 342, 991–995 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  34. Mitchell, A. J. et al. Structure-guided reprogramming of a hydroxylase to halogenate its small molecule substrate. Biochemistry 56, 441–444 (2017).

    Article CAS PubMed Google Scholar

  35. Gomez, C. A., Mondal, D., Du, Q., Chan, N. & Lewis, J. C. Directed evolution of an iron(II)- and α-ketoglutarate-dependent dioxygenase for site-selective azidation of unactivated aliphatic C–H bonds. Angew. Chem. Int. Ed. 62, e202301370 (2023).

    Article CAS Google Scholar

  36. Neugebauer, M. E. et al. Reaction pathway engineering converts a radical hydroxylase into a halogenase. Nat. Chem. Biol. 18, 171–179 (2022).

    Article CAS PubMed Google Scholar

  37. Papadopoulou, A. et al. Re-programming and optimization of a l-proline cis-4-hydroxylase for the cis-3-halogenation of its native substrate. ChemCatChem 13, 3914–3919 (2021).

    Article CAS Google Scholar

  38. Olivares, P., Ulrich, E. C., Chekan, J. R., van der Donk, W. A. & Nair, S. K. Characterization of two late-stage enzymes involved in fosfomycin biosynthesis in pseudomonads. ACS Chem. Biol. 12, 456–463 (2017).

    Article CAS PubMed Google Scholar

  39. Yun, D. et al. Structural basis of regiospecificity of a mononuclear iron enzyme in antibiotic fosfomycin biosynthesis. J. Am. Chem. Soc. 133, 11262–11269 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  40. Higgins, L. J., Yan, F., Liu, P. H., Liu, H. W. & Drennan, C. L. Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme. Nature 437, 838–844 (2005).

    Article CAS PubMed Google Scholar

  41. Tarantino, G. & Hammond, C. Catalytic C(sp3)–F bond formation: recent achievements and pertaining challenges. Green Chem. 22, 5195–5209 (2020).

    Article CAS Google Scholar

  42. Matthews, M. L. et al. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc. Natl Acad. Sci. USA 106, 17723–17728 (2009).

  43. Kulik, H. J. & Drennan, C. L. Substrate placement influences reactivity in non-heme Fe(II) halogenases and hydroxylases. J. Biol. Chem. 288, 11233–11241 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  44. Kissman, E. N. et al. Biocatalytic control of site-selectivity and chain length-selectivity in radical amino acid halogenases. Proc. Natl Acad. Sci. USA 120, e2214512120 (2023).

  45. Chan, N. H. et al. Non-native anionic ligand binding and reactivity in engineered variants of the Fe(II)- and α-ketoglutarate-dependent oxygenase, SadA. Inorg. Chem. 61, 14477–14485 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  46. Dai, L. et al. Structural and functional insights into a nonheme iron- and α-ketoglutarate-dependent halogenase that catalyzes chlorination of nucleotide substrates. Appl. Environ. Microbiol. 88, e02497–02421 (2022).

    Article PubMed PubMed Central Google Scholar

  47. Kastner, D. W., Nandy, A., Mehmood, R. & Kulik, H. J. Mechanistic insights into substrate positioning that distinguish non-heme Fe(II)/α-ketoglutarate-dependent halogenases and hydroxylases. ACS Catal. 13, 2489–2501 (2023).

    Article CAS Google Scholar

Download references

Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer (2024)
Top Articles
Latest Posts
Article information

Author: Ouida Strosin DO

Last Updated:

Views: 5988

Rating: 4.6 / 5 (76 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Ouida Strosin DO

Birthday: 1995-04-27

Address: Suite 927 930 Kilback Radial, Candidaville, TN 87795

Phone: +8561498978366

Job: Legacy Manufacturing Specialist

Hobby: Singing, Mountain biking, Water sports, Water sports, Taxidermy, Polo, Pet

Introduction: My name is Ouida Strosin DO, I am a precious, combative, spotless, modern, spotless, beautiful, precious person who loves writing and wants to share my knowledge and understanding with you.